
Theoretical study of near edge electron energy loss spectroscopy of metal nanoclusters

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2006 J. Phys.: Condens. Matter 18 1211

(http://iopscience.iop.org/0953-8984/18/4/009)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 28/05/2010 at 08:52

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/18/4
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 18 (2006) 1211–1226 doi:10.1088/0953-8984/18/4/009

Theoretical study of near edge electron energy loss
spectroscopy of metal nanoclusters

Michele Gusso

ENEA - Ente per le Nuove Tecnologie l’ Energia e l’ Ambiente, Unitá Materiali e Nuove
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Abstract
The near edge structure of the electron energy loss spectra (ELNES) of copper
and gold clusters containing up to 923 atoms are theoretically studied with
the multiple scattering approach in the framework of density functional theory.
Calculations are performed both in the atomic sphere approximation (ASA) and
in the full potential (FP) framework and their results compared. The effects
of structure relaxation of the clusters on the ELNES are assessed. Finally an
example of the ELNES of a Cu–Ag core shell nanocrystal is given.

1. Introduction

Nanoclusters have received much attention due to their unique physical and chemical
properties. Among the techniques used for their characterization, transmission electron
microscopy (TEM) plays a major role with its unique capability of giving analytical and
structural information with atomic spatial resolution. Structural information is mainly obtained
with high-resolution transmission electron microscopy images (HRTEM) [1], diffraction
patterns and Z -contrast scanning transmission electron microscopy (STEM) images [2], while
electron energy loss spectroscopy (EELS) can be used in order to obtain elemental information
at an atomic scale. In particular, the near edge structure (ELNES) of a core level excitation of
an atomic element is sensitive to the structural and chemical environment of that element. The
advent of modern transmission electron microscopes equipped with high-brilliance sources,
such as field emission guns, allows the recording of ELNES from single nanoclusters or even
from different regions of the same nanocluster if a STEM or a TEM equipped with an imaging
energy filter is used. These characteristics make ELNES an appealing tool for determining the
physical and chemical properties of nanoclusters and in particular their surface characteristics,
which are difficult to obtain with other techniques.

Despite its great potential for giving structural and chemical information on the nature of
nanoclusters, ELNES does not appear very often in the literature of these materials and in any
case the large amount of information contained in these spectra is rarely exploited. The main
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reason for this lies in the difficulty of interpreting an ELNES spectrum which, most of the time,
can only be achieved by a comparison with simulated spectra. Since an ELNES spectrum is
the result of an excitation process, a rigorous simulation would require the use of theoretical
tools such as two-particle Green’s function theory (solution of the Bethe–Salpeter equation)
or time-dependent density functional theory (TDDFT) [3]. Although TDDFT has undergone
important advances in recent years, its applicability to complex systems (i.e. systems with
many inequivalent atoms in the unit cell) still requires a considerable and often insurmountable
computational effort. The use of these techniques is necessary in order to simulate the many-
body effects that are present during excitation processes. On the other hand, when a core
electron is excited the most important of such effects is the so-called core hole effect that can
sometimes be mimicked by the use of simple approximations such as the Z + 1 approximation.
In this way good simulations can be obtained by simply using standard density functional theory
(DFT) [4].

In this work we treat the excitation of a core electron by a fast incident electron within
DFT. We fix our attention on the theoretical simulation of ELNES of Cu and Au nanocrystals
containing up to 923 atoms with cuboctahedral symmetry. It has been shown [5] that, from a
computational point of view, the study of nanoclusters is easier if a real space approach is used;
in this paper we calculate the ELNES within the multiple scattering (MS) formalism (precisely,
we use a real space formulation of the screened Korringa–Kohn–Rostoker (KKR) method [14]).
In section 2 general expressions to calculate ELNES in the MS formalism are reported. In
section 3 we discuss some technical aspects of the computation, and in particular we show
how the rotational symmetry of the clusters considered is exploited in order to speed up the
calculation and decrease the amount of memory required for the computation. Section 4 reports
the results. First we show the effects of nanocluster size on the ELNES features. Then we assess
the validity of some approximations. We show the difference between a self-consistent field
(SCF) calculation performed with full potentials (FP) instead of adopting the atomic sphere
approximation (ASA) [6]. Then the effects on the ELNES spectra of the structure relaxation of
nanoclusters is considered. Finally we report an example of a cluster composed of a Cu core
surrounded by a shell of Ag atoms. Section 5 contains the conclusions.

2. Theory

Treating the fast incident electron as a plane wave and using the first Born approximation, the
EELS signal is given by the double differential scattering cross section [7, 8]:

∂2σ

∂�E∂�
= 4γ 2

q4a2
0

k

k0
S(q, q,�E), (1)

where a0 = 4πε0h̄2/me2 is the Bohr radius and γ = (1 − β2)−1/2 is the relativistic factor.
In this expression the diagonal part (q = q′) of the mixed dynamic form factor (MDFF)
S(q, q′,�E) appears [9]. The wavevector q is such that −h̄q is the momentum transferred
to the scatterer in the inelastic interaction (i.e. q = k − k0, k0 and k being the wavevectors
of the incident and scattered electrons, respectively). We now consider one-electron transitions
and we write the mixed dynamic form factor S(q, q′,�E) as the Fourier transform of the real
space MDFF (rMDFF) [8]

S(r, r′,�E) =
∫ εF

εF−�E
ρi (r, r′, ε)ρ f (r

′, r, ε + �E) dε, (2)

where ρi (r, r′, ε) and ρ f (r, r′, ε) are the energy-dependent density matrices of the target
initial state and final state, respectively, and εF is the Fermi energy. Thus, the rMDFF is
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the energy correlation function between the density matrices of occupied (initial) states and
unoccupied (final) states, with energy difference �E between these states. �E equals the
energy loss of the probe electron.

The density matrix is related to the one-electron Green’s function by the relation:

ρ(r, r′, E) = − 2

π
Im G(r, r′, E). (3)

Therefore, if the Green’s function of a material system is known, its EELS spectrum can
be computed. In the following we will restrict our calculation to the muffin tin (MT)
approximation for the derivation of the expression of the ELNES intensity. The results for
a general FP treatment are quoted in the appendix. The following results are also valid for
complex energies.

In multiple scattering theory the Green’s function G is calculated by solving the
Lippmann–Schwinger equation for G (see for example [10, 11]) in an effective potential which
is the one that appears in the Kohn–Sham equations [12]. The Green’s function can be written
in a mixed site-angular-momentum representation as

G(Ri + r,Rj + r′, E) =
∑
L L ′

Ri
L(r, E)YL(r̂)Gij

L L ′(E)R j
L(r ′, E)YL ′(r̂′)

+ δi j

∑
L

Ri
L(r<, E)YL(r̂)H j

L(r>, E)YL(r̂′), (4)

where L ≡ (lm) are angular-momentum indices, Ri
L(r, E) and H i

L(r>, E) are properly
normalized regular and irregular scattering solutions corresponding to the MT potential centred
at position Ri [13], r> (r<) denotes the greater (lesser) of r and r ′, YL(r̂) are real spherical
harmonics and Gij

L L ′ are the elements of the structural Green’s function matrix (for the
calculation of these elements see equation (7) below). For spherically symmetric potentials,
the normalization is chosen such that their asymptotic behaviour is

Ri
L(r, E) ∼ jl − iκ t i

l hl , (5)

H i
L(r, E) ∼ −iκhl , (6)

where t i
l = −1/κ sin δi

l eiδi
l is the atomic scattering matrix (δi

l are the scattering phase shifts of
atom i , κ = √

E with E measured in rydberg), jl are first kind spherical Bessel functions and
hl are spherical Hankel functions. For the calculation of the structural Green’s function matrix
G(E) = {Gij

L L ′(E)} it is useful to introduce a reference system r made of new scattering centres
with potentials V r located in the same positions as the real scattering centres [14]. Denoting
by tr(E) and Gr(E) the atomic scattering matrices and the structural Green’s function matrices
of this reference system r, we have the following relation which relates the structural Green’s
function of the two systems:

G(E) = Gr(E)(I − ∆t(E)Gr(E))−1, (7)

where I is the identity matrix and we have introduced

∆t(E) = t(E) − tr(E). (8)

If the potentials V r are zero everywhere we have the vacuum as reference system. A good
choice [14] is to take constant repulsive muffin tin potentials arranged on the sites of the real
system (for example potential wells with V r = 4 or 8 Ryd). In this way it can be shown that the
structural Green’s function Gr(E) is short ranged (i.e. it decays exponentially with the distance
|Ri − R j | between two sites). Consequently the structural Green’s function matrix of the real
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system G(E) is obtained from equation (7) by inversion of a sparse matrix. The matrix Gr(E)

is obtained by an equation analogous to (7):

Gr(E) = G0(E)(I − tr(E)G0(E))−1, (9)

where G0(E) is the structural Green’s function matrix of free space. It can be shown [14] that
accurate results for the elements Gr,i j

L L ′(E) of the matrix Gr(E) are obtained even if we take
a small cluster of muffin tin potentials around each atom (for example, a cluster of 19 muffin
tin potentials around each atom is sufficient to get accurate results for copper). Therefore the
calculation of the structural Green’s function of the reference system requires little effort and
is particularly convenient when a material with a lot of atoms in the unit cell is being studied.

We now consider the case of an excitation of a core electron whose wavefunction is
assumed to be well described by an atomic wavefunction completely sharp in energy. We
also assume that all other core levels are sufficiently separated in energy from the one we are
considering, so that their contribution to ELNES (i.e. integral in energy in (2)) can be neglected.
The density matrix of the core electrons with angular momentum l is given by

ρ(r, r′, Ei
c) = 2

∑
m

Ric
l (r, Ei

c)YL(r̂)Ric
l (r ′, Ei

c)YL(r̂′), (10)

where Ric
l are real core electron functions of the atom i corresponding to the energy level Ei

c
and the factor 2 comes from the sum over spins.

Inserting equations (3), (4) and (10) in (2) we have:

S(q, q, E) = − 2

π

∑
i

∫
d3r

∫
d3r ′ ∑

L

Ric
l (r, Ei

c)YL(r̂)Ric
l (r ′, Ei

c)YL(r̂′)

× Im

[∑
L L ′

Ri
l (r, E)YL(r̂)Gii

L L ′(E)Ri
l (r

′, E)YL ′(r̂′)

+
∑

L

Ri
l (r<, E)YL(r̂)H i

l (r>, E)YL(r̂′)
]

e−iqreiqr′
. (11)

Since the core electron functions of an atom are localized near the atom itself we only need to
consider the site diagonal elements of Gij . In the electric dipole approximation we expand the
terms e−iqr to first order in qr. By rearranging the integrals we have:

S(q, q,�E) = −4

π
Im

∑
i

[∑
mL ′

Mi B
L L ′(q) +

∑
mL ′ L ′′

Mi A
L L ′′(q)Gii

L ′ L ′′ Mi A
L L ′(q)

]
, (12)

where

Mi A
L L ′(q) =

∫
dr Ric

l (r, Ei
c)YL(r̂)(qr)Ri

l′ (r, E)YL ′(r̂)

Mi B
L L ′(q) = 2

∫ ∫
Ric

l (r, Ei
c)YL(r̂)(qr)Ri

l′ (r, E)YL ′(r̂)

× Ric
l (r ′, Ei

c)YL(r̂′)(qr′)H i
l′(r

′, E)YL ′(r̂′)
× θ(r − r ′) dr dr′.

(13)

Here θ(r) is the step function. In the appendix we report the expressions for the double
differential scattering cross section in the case where a full potential treatment is used
instead of the muffin tin approximation. Expressions (12) and (14) are the MS results that
corresponds to the relations reported in [15] obtained in the augmented plane wave approach.
Similar expressions for x-ray absorption spectra were obtained within the MS theory but with
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various approximations: for real energies and with the muffin tin approximation [16], for real
energies and with the full potential treatment [17] and for complex energies and the muffin tin
approximation [18, 19].

The spectrum acquired in a TEM is obtained by recording the electrons scattered by
the specimen that pass through a spherical aperture. Therefore we have to integrate the
expressions (13) over the scattering wavevector q from a qmin = kiθE to a qmax = ki (θ

2
max +

θ2
E )1/2, where θE = �E(E + EM )/E(E + 2EM ) with EM the electron rest energy and θmax

the maximum angle that the scattered electrons entering the aperture form with the incident
electrons. Using the results of [20] for the integration over q we have (supposing the aperture
to be in the xy plane with the z-axis parallel to the incident beam)

∂σ(�E, qmin, qmax)

∂�E
= −16γ 2

a2
0

1

k2
0

Im

[∑
i

∑
mL ′

(
ln

qmax

qmin
(Mi Bx x

L L ′ + Mi Byy
L L ′ )

+ A(2Mi Bzz
L L ′ − Mi Bx x

L L ′ − Mi Byy
L L ′ )

)

+
∑

mL ′ L ′′

(
ln

qmax

qmin
(Mi Ax

L L ′ Gii
L ′L ′′ Mi Ax

L L ′′ + Mi Ay
L L ′ Gii

L ′L ′′ M
i Ay
L L ′′)

+ A(2Mi Az
L L ′ Gii

L ′L ′′ Mi Az
L L ′′ − Mi Ax

L L ′ Gii
L ′L ′′ Mi Ax

L L ′′

− Mi Ay
L L ′ Gii

L ′L ′′ M
i Ay
L L ′′ )

)]
, (14)

where

A = 2m

8h̄2

�E2

E0

(
1

q2
min

− 1

q2
max

)
+ �E

2E0
ln

qmax

qmin
+ 1

8

h̄2

2m E0
(q2

max − q2
min) (15)

with E0 = h̄2k2
0/2m and �E = h̄2(k2

0 − k2)/2m the energy lost by the incident electron and

Mi Ax
L L ′ =

∫
dr Ric

l (r, Ei
c)YL(r̂)x Ri

l′(r, E)YL ′(r̂)

Mi Bx x
L L ′ = 2

∫ ∫
Ric

l (r, Ei
c)YL(r̂)x Ri

l′ (r, E)YL ′(r̂)

× Ric
l (r ′, Ei

c)YL(r̂′)x ′H i
l′(r

′, E)YL ′(r̂′)θ(r − r ′) dr dr′,
(16)

with analogous obvious definitions for the other matrix elements M . Writing the Cartesian
coordinates x , y and z in a polar reference system, the integrals (16) can be easily factorized
into a radially dependent and an angular-dependent part. The last one determines the dipole
selection rule and can be expressed in terms of Wigner symbols. Equation (14) is the
ELNES expression that will be used in all the examples reported in section 4 when the ASA
approximation is used, while for a FP treatment the relations reported in the appendix are
considered. Note that the total ELNES signal of a cluster of atoms can be decomposed into
separate contributions from the single atoms forming the cluster. Note also that since in
equation (14) we have integrated over a spherical aperture positioned in the xy plane, any
possible anisotropy of the scattering cross section with respect to q in this plane is lost. Instead
a possible anisotropy in the qz with respect to the qxy direction is still present due to the different
weights in equation (14) of the Mi Az and Mi Bz matrix elements with respect to the xy ones.
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3. Computational aspects

In order to study the dependence of the ELNES on the cluster dimension we have focused
our attention on nanocrystals with cuboctahedral symmetry made of copper or gold with an
increasing number of atoms. For each cluster, we have first calculated the ground state charge
density and the Kohn–Sham effective potential in a SCF way using the MS approach and
then the ELNES spectrum using the expressions described in the previous section. We have
considered the following sequence of magic numbers: 13, 55, 147, 309, 561, 923. To account
for the spilling of the electron charge into the vacuum region in the SCF cycles, each cluster
was surrounded by empty spheres located in the atomic positions of the cluster two positions
next in the sequence. So, for example, a cluster of 55 Cu atoms was surrounded by empty
spheres so as to have a cuboctahedral cluster with a total of 309 atoms (55 Cu atoms +254
empty spheres). In the following the notation Cu55 will be used for the 55 Cu atom cluster, with
obvious extension for all other kind of clusters. Exchange and correlation effects were treated in
the local density approximation (LDA) with the Vosko, Wilk and Nusair parametrization of the
exchange correlation potential [21]. The calculations were performed in the scalar relativistic
approximation [22]. The core electrons were allowed to relax during the SCF cycles (i.e. no
frozen core approximation was used). The maximum angular momentum used in the expansion
of the Green’s functions (equation (4)) was lmax = 3 for Cu clusters and lmax = 4 for Au
clusters. The electron density in the SCF cycles was calculated from the Green’s function by
a contour integral in the complex energy plane. For the occupation function we used a Fermi–
Dirac distribution with an electronic temperature of 400 K and the contour integral is evaluated
with 21 complex energy points and three Matsubara poles [23]. For the calculation of the
ELNES we considered a straight line parallel to the energy axis with a small imaginary part
πkT = 0.108 eV which corresponds to T = 400 K, the temperature used in the self-consistent
calculations. The calculation of the screened KKR parameters Gri j was obtained considering
repulsive potentials of 8 Ryd height and with a coupling up to the second neighbour sites.
An analysis of the convergence of the density of states with respect to the above-mentioned
parameters (lmax, number of complex energy points for the evaluation of the integral of the
density of states, number of coupling atoms to calculate the screened structure constants Gr,
height of the repulsive potentials), was performed on bulk copper and gold showing that the
parameters used are good enough to obtain accurate results for both the ground state charge
density and ELNES calculations, in view also of the fact that the ELNES intensity is then
convoluted with a Lorentzian to account for the finite lifetime of the valence states and with a
Gaussian in order to simulate the instrumental resolution. We also found that for the clusters
considered the screening parameters used give accurate results in an energy range larger than
for bulk calculations.

In order to study the dependence of the ELNES upon the relaxation of the clusters, we
performed classical molecular dynamics simulations on two representative examples of the two
series of clusters: Cu309 and Au309. We used a tight-binding second-moment approximation
scheme [24]. In these cases the ASA radii used in the MS calculations were determined by
calculating the local strain at each atomic site of the cluster (with respect to the unrelaxed
case), and by changing the unrelaxed ASA radius by an amount proportional to the local strain.

The most difficult part of the computational procedure is the calculation of the matrix
elements Gii

L L ′(E) which are obtained by inverting the matrix given by equation (7). Different
methods have been proposed to efficiently solve equation (7); among those deserving particular
attention are Haydock’s recursion method [25, 26], the local self-consistent multiple scattering
method (LSMS) [27] and the locally self-consistent Green’s function (LSGF) approach [28].
Since we have considered clusters with a well-defined point group symmetry (Oh), the
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computational speed and the cluster size can be increased enormously if group representation
theory is used [29, 30]. By using the projection operators of the point group Oh, basis states
that transform according to one of its ten irreducible representations are formed. With respect
to these basis states the matrix (7) becomes a block diagonal one. For example the matrix
14 768×14 768 of a cluster with 923 atoms and lmax = 3, is reduced to: four matrices with
dimensions 363, 254, 296, 321 corresponding to the states A1g, A1u, A2g, A2u respectively; two
identical 657-dimensional matrices for Eg states; two identical 572-dimensional matrices for Eu

states; three identical 868-dimensional matrices for T1g states; three identical 978-dimensional
matrices for T1u states; three identical 935-dimensional matrices for T2g states; three identical
911-dimensional matrices for T2u states. All calculations were done by modifying a screened
KKR code originally written for computation of bulk and surface electronic properties [14].

To account for the finite lifetime of the valence states, the calculated ELNES spectra were
convoluted with an energy-dependent Lorentzian with a broadening parameter  = 0.1 × ε,
where ε is the energy of the excited electron calculated with respect to the Fermi level [31, 32].
In order to keep to a minimum the loss of information determined by the instrumental resolution
and to allow a comparison with experiments performed with a modern field emission gun
(FEG)-TEM equipped with a pre-specimen monochromator, we have further convoluted the
data with a Gaussian having a full width at half maximum of only 0.2 eV.

It must be stressed that the effects of the core hole were never taken into account in
the simulations presented in this work. We have avoided complicating the calculations for
the following two reasons: for metals the effect of the core hole is less important than for
semiconductors or insulators (although it is still present as has been reported in a study for
copper [31] where, in particular, it is shown that it affects mainly the ELNES intensity in the
first few electronvolts above the Fermi level); moreover we were mainly interested in showing
the relative variation of the ELNES signal while changing some parameters (such as cluster
size, cluster relaxation, ASA versus FP). Of course for a precise comparison with experimental
data some modelling of the core hole (such as the Z + 1 approximation, Slater’s transition
state rule, etc) would be necessary. Finally it is to be noted that, because of the symmetry
of the clusters considered in the present work, the value of the angle of the aperture used for
recording the ELNES does not influence the shape of the spectrum and it simply determines a
different overall scale factor (provided we consider collecting angles so that the dipole electric
approximation is still valid).

4. Results and discussion

4.1. Dependence of ELNES on nanocluster size

Figure 1 shows the dependence of the Cu L3 ELNES on the cluster size by considering six
dimensions starting from Cu13 up to Cu923. In this and in all of the figures showing ELNES
spectra, the zero of the energy is shifted so that it corresponds to the edge onset. In fact absolute
edge onset values obtained with the use of LDA have errors of many electronvolts, so that they
are not useful for comparison with experimental data. Some modelling of many body effects
is necessary in order to obtain reliable values of edge onsets. Besides, to make comparison
among ELNES spectra of clusters with different dimensions easier, in all the figures in this
paper we always report the ELNES intensity normalized to the number of atoms of the cluster.
It can be clearly seen that the cluster dimension strongly influences the shape of the spectrum:
the number, height and position of the characteristic peaks of this edge. As the cluster size
increases, the ELNES spectra become more and more similar.

In figure 1 we have also reported the ELNES of a cluster of 309 identical Cu atoms
(labelled Cu309Bulk). For all atomic sites we have used the potential of a Cu atom in a fcc Cu
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Figure 1. ELNES of the Cu L3 edge for clusters Cu13, Cu55, Cu147, Cu309, Cu561, Cu923. The
curve Cu309Bulk is the ELNES of a cluster of 309 identical Cu atoms with the potential of Cu bulk.
The curve CuBulk is the ELNES of a Cu fcc crystal. To allow an easier comparison among the
curves, each curve of the list (starting from Cu13) was shifted in the vertical direction by a constant
value (=0.05) with respect to the previous one.

crystal. This spectrum is to be compared with that of Cu309 which has the same geometry. All
the differences are due to a redistribution of the charge density inside the cluster and its spilling
in the vacuum region. The differences between the two spectra are a clear indication of the
importance of performing a SCF calculation.

As already said, the ELNES of a cluster is the sum of contributions from the single atoms
forming the cluster. We have focused our attention on cluster Cu309 and we have reported in
figure 2 the contributions to the ELNES from atoms in selected shells with increasing radii.
Outer atoms present a smoother spectrum with respect to the inner ones, with a variation in
position and height of the peaks. There is also an energy shift of the onset of the spectrum
of each atom due to a variation of the energy level of the 2p core electrons (which are the
electrons excited in this edge). In fact the binding energy of the core electrons decreases as we
move towards atoms near the surface of the cluster. The variations of these energy levels range
from 0 to 1.1 eV for ASA calculations of copper. For all these reasons the total spectrum of the
cluster (which is reported in the bottom panel of figure 2), is generally less structured than that
of the single atoms forming the cluster. For the same aforementioned reasons the ELNES tend
to have generally fewer features while increasing the cluster size (since we have contributions
from an increasing number of inequivalent atoms so that the sharp structures in the ELNES
get smeared). Nevertheless, some peaks that could be almost absent in small nanoclusters
can be found as the cluster size increases. This happens, for example, when these peaks are
mainly caused by multiple scattering events of the excited electron with atoms far away from
the excited one. Therefore they almost do not appear if the cluster is small. This seems to be
the case of the peaks at 4 and 8 eV in the bulk spectrum which, although in a position shifted
towards higher energies (with respect to the position in CuBulk), are better visible in the bigger
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Figure 2. Contributions to the ELNES of the L3 edge of cluster Cu309 from atoms with increasing
distance from the centre. The radius r is given in units of the Cu bulk lattice parameter. The thin
solid line refers to the ASA calculation while the dashed line refers to the FP result. For comparison,
the total ELNES spectrum of the cluster obtained with the ASA approximation is reported in the
bottom panel (thick solid line).

clusters than in the smaller ones. Hence, the combination of all these effects does not allow the
prediction of a precise systematic trend.

A similar analysis has been performed for the O3 edge of gold clusters. Figure 3 reports
the ELNES for the clusters Au13 up to Au923, while figure 4 shows the contributions from
selected atoms of cluster Au309. The same kind of considerations made for copper can be
drawn also for Au clusters.

4.2. ASA versus FP calculations

It was shown [33] that the charge density obtained using the ASA approximation in a bulk
material is very close to the density calculated with the FP method. But for atoms near the
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Figure 3. ELNES of the Au L3 edge for clusters Au13, Au55, Au147, Au309, Au561, Au923. The
curve Au309Bulk is the ELNES of a cluster of 309 identical Au atoms with the potential of Au bulk.
The curve AuBulk is the ELNES of a Au fcc crystal. To allow for easier comparison among the
curves, each curve of the list (starting from Au13) was shifted in the vertical direction by a constant
value (=10) with respect to the previous one.

surface of the clusters there is a lowering of the local symmetry so that the charge density
exhibits greater variation than in the bulk. In order to check the importance of going beyond a
spherical approximation for the potential, we have performed SCF FP calculations on clusters
with 55, 147 and 309 atoms and we have calculated the corresponding ELNES spectra using
the expressions for the matrix elements reported in the appendix. Figures 2 and 4 show the
ELNES contributions from selected atoms of clusters Cu309 and Au309, respectively, obtained
using FP calculations and the ASA approximation. The spectra for atoms near the centre of the
clusters are very similar (in particular for Cu309) apart from a different energy shift connected
to a variation of the energy level of the core electron excited in this edge. For Cu309 the
variation of the 2p core level energy for the atoms in the cluster is within 1.1 eV for ASA
calculations and 0.8 eV for FP calculations. For Au309 the variation of the 5p core level energy
is 0.8 eV in the ASA approximation and 0.9 eV for FP calculations. The resulting ELNES
spectra for Cu and Au clusters are shown in figure 5. The comparison with the corresponding
spectra obtained in the ASA approximation, also reported in the figures, shows that there are
some slight variations which are more evident for Au clusters.

4.3. Effects of nanocluster relaxation on ELNES

Up to now we have considered cuboctahedral clusters obtained by cutting a portion of a perfect
crystal. When left free to relax the atoms rearrange in order to minimize the free energy of
the cluster. We have relaxed the structure of the clusters with molecular dynamics using tight-
binding potentials in the second moment approximation [24] as described in section 3. Even
if this in not an ab initio scheme, these potentials have been shown to give reliable results and
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total ELNES spectrum of the cluster obtained with the ASA approximation is reported in the bottom
panel (thick solid line).

so can give us a good idea of the effects of relaxation on ELNES spectra. It is to be noted that
after the relaxation, groups of rotationally equivalent atoms contract or expand by the same
amount so that the relaxed cluster keeps the Oh point group symmetry. Figures 6 and 7 show a
comparison of the ELNES for relaxed and unrelaxed Cu309 and Au309 clusters, respectively, in
the ASA approximation. The relaxation yields some small changes in the spectrum of Cu309.
In particular the shoulder at about 1 eV disappears after the relaxation. For Au309 the effects
of relaxing the cluster are more important since they concern the shape of the whole spectrum.

4.4. Example of a CuAg core shell cluster

The clusters considered in the previous paragraphs were surrounded by a vacuum. We now
consider an example of a Cu cluster surrounded by a layer of Ag atoms. We start with a core
of Cu147 and suppose that we coherently grow on it a shell of 162 Ag atoms so as to have a
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Figure 5. Comparison of the L3 Cu edge and the O3 Au edge simulated with a full potential (FP)
calculation and using the atomic sphere approximations (ASA). On the left the spectra for clusters
Cu55, Cu147 and Cu309 are reported, while on the right the spectra for clusters Au55, Au147 and
Au309 are shown.

core–shell cluster with a total of 309 atoms. This Cu147Ag162 cluster is then surrounded
with empty spheres in the usual way as described in section 3. We have performed a SCF
calculation in the ASA approximation of both the unrelaxed and relaxed structure obtained
with the molecular dynamics procedure described in section 3. Figure 8 reports the ELNES
spectra of the Cu L3 edge of relaxed and unrelaxed Cu147Ag162. As reported in the previous
section for Cu309, even in this case the effect of relaxation has only a small effect on the
ELNES spectrum, mainly regarding a shift of about 0.3 eV of the first peak.

Figure 8 contains also the spectrum of Cu147 to allow a comparison with the ELNES of
the core–shell cluster. There are clear variations in the behaviour of the spectrum due to the
presence of the Ag shell. In order to disentangle the contributions from atoms in different
shells, we have reported their spectra in figure 9. At lower energy loss (less than 10 eV from
the onset) the spectra of inner atoms differ from that of Cu147 mainly for an energy shift of the
whole spectrum, while the outer ones (in particular the spectrum of the outermost atoms) differ
in shape. Note that in the case of the core–shell the variation of the 2p Cu core level energy
among the different atoms of the clusters is in the range of 0.2 eV (to be compared to the 1.1 eV
for Cu147).
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shown.

5. Summary and conclusion

We have calculated ELNES spectra for copper and gold clusters with cuboctahedral symmetry
using a multiple scattering approach. The use of symmetry allowed us to perform SCF
calculations on quite big clusters (up to 923 atoms). So we have studied the influence of the
size of the clusters on the shape of the ELNES spectra. We have also verified that the ASA
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Figure 9. Contributions to the ELNES of the Cu L3 edge of the relaxed core–shell cluster
Cu147Ag162 (solid line) and cluster Cu147 (dashed line) from atoms with increasing distance from
the centre. The radius r is given in units of the Cu bulk lattice parameter.

is a good approximation to simulate ELNES spectra for clusters with this symmetry (although
a FP treatment is slightly more important when considering Au clusters). The introduction
of structural relaxation of the clusters yields only small variations in the spectra (which even
in this case are more pronounced for Au clusters). Nevertheless, the combination of both FP
calculations and structure relaxation could have a significant influence on the shape of the
spectra compared with an ASA simulation of an unrelaxed cluster. Therefore, when studying
clusters made of materials different from the ones considered in this paper and/or with other
point group symmetries, it would always be advisable to make a preliminary test on a cluster
with a typical dimension of interest in order to check the importance of the structural relaxation
and of the FP calculations.



Theoretical study of near edge electron energy loss spectroscopy of metal nanoclusters 1225

Finally we have given an example of the ELNES of a Cu core–Ag shell cluster and we
have shown the strong effect that the Ag shell determines on the ELNES with respect to the
case of a ‘bare’ Cu cluster.

Clusters can be grown with various point group symmetries. For example Au clusters
can have cuboctahedral, octahedral, truncated octahedral, icosahedral, decahedral structures,
etc [34]. The formalism presented in this work can be straightforwardly applied to the above-
mentioned structures so as to study the dependence of the ELNES on the cluster point group
symmetry and dimension. Preliminary work of this kind has already been presented using
non-SCF potentials [35]. In this way ELNES becomes a powerful tool for distinguishing the
structure of single clusters. The extension of this work to core–shell clusters in order to study
the nature of the interface between the core and the shell seems to be particularly interesting.

Acknowledgment

P H Dederichs is gratefully acknowledged for providing the original screened KKR code.

Appendix

We follow similar definitions reported in [36, 37]. The Green’s function is

G(Ri + r,Rj + r′, E) =
∑
L L ′

Ri
L(r, E)Gij

L L ′(E)R j
L(r′, E)

+ δi j

∑
L

Ri
L(r<, E)H j

L(r>, E), (A.1)

where Ri
L(r, E) is the solution of the single-potential-scattering problem for a spherical wave

jl(κr)YL(r̂) of angular momentum L incident on the general potential V i (r) of cell i . The
wavefunctions Ri

L(r, E) and the potentials V i (r) are expanded into real spherical harmonics:

Ri
L(r, E) =

∑
L ′

Ri
L ′ L(r, E)YL ′(r̂) V i (r) =

∑
L ′

VL(r)YL ′(r̂). (A.2)

Details on how to calculate the functions Ri
L L ′ can be found in [36]. The presence of the

nonspherical components VL(r) for L �= 0 led to a coupled set of radial equations for the
different partial waves Ri

L L ′ which are solved with an iterative procedure. The behaviour of
the total wavefunction Ri

L(r, E) is dominated by the diagonal component RL L(r, E) which
is roughly equals to the solution of a Schrödinger-like equation with the radial symmetric
potential VL=0(r) (i.e. similar to the solution obtained in the ASA approximation).

Following as in section 2 we arrive at the same expression for S(q, q,�E) shown in
equation (12) with G(E) given by equation (7) but with the following new definitions of the
matrix elements:

Mi A
L L ′(q) =

∫
dr Ric

L (r, Ei
c)YL(r̂)(qr)Ri

L ′(r, E)

=
∑
L ′′

∫
dr Ric

L (r, Ei
c)YL(r̂)(qr)Ri

L ′′ L ′(r, E)YL ′′(r̂),

Mi B
L L ′(q) = 2

∫ ∫
Ric

L (r, Ei
c)YL(r̂)(qr)Ri

L ′(r, E)

× Ric
L (r ′, Ei

c)YL(r̂′)(qr′)H i
L ′(r′, E)

× θ(r − r ′) dr dr′

= 2
∑
L1L2

∫ ∫
Ric

L (r, Ei
c)YL(r̂)(qr)Ri

L1L ′(r, E)YL1(r̂)
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× Ric
L (r ′, Ei

c)YL(r̂′)(qr′)H i
L2L ′(r ′, E)YL2(r̂

′)
× θ(r − r ′) dr dr′.

(A.3)

In order to compare these results with the ones obtained in the ASA approximation, let us
consider, for example, the matrix elements Mi A

L L ′(q). Now we have a sum of contributions from
various RL ′′L ′ , the most important being the diagonal one RL ′ L ′ . All the other contributions
due to the non diagonal angular momentum components of Ri

L L ′ are a consequence of the non
sphericity of the potentials. Since these functions are small in the region were the core function
extends, their contributions to the matrix element is often negligible.

Finally, it is easy to find analogous expressions for the matrix elements given by
equation (16).
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[4] Köstlmeier S 2001 Ultramicroscopy 86 319
[5] Chelikowsky J R 2000 J. Phys. D: Appl. Phys. 33 R33
[6] Andersen O K 1975 Phys. Rev. B 12 3060

Andersen O K and Jepsen O 1977 Physica (Utrecht) B 91 317
[7] Inokuti M 1971 Rev. Mod. Phys. 43 297
[8] Schattschneider P, Nelhiebel M and Jouffrey B 1999 Phys. Rev. B 59 10959
[9] Kohl H and Rose H 1985 Adv. Electron. Electron Phys. 65 173

[10] Zeller R 1997 Phys. Rev. B 55 9400
[11] Braspenning P J and Lodder A 1994 Phys. Rev. B 49 10222
[12] Kohn W and Sham L J 1965 Phys. Rev. 140 1133A
[13] Lodder A and Braspenning P J 1994 Phys. Rev. B 49 10215
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[32] Hébert C, Kostner K and Schattschneider P 2000 Proc. EUREM-Xii (Brno) vol 3, p 333 (Edited by CS for

Electron Microscopy)
[33] Andersen O K, Pawlowska Z and Jepsen O 1986 Phys. Rev. B 34 5253
[34] Cleveland C L, Landman U, Schaaff T G, Shafigullin M N, Stephens P W and Whetten R L 1997 Phys. Rev. Lett.

79 1873
[35] D’Agostino G and Gusso M 2003 MRS Proc. vol 788, ed S Komarneni, J C Parker and J J Watkins p 360
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